Journal of Organometallic Chemistry, 145 (1978) 57–68 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

REACTION OF SODIUM η^{5} -CYCLOPENTADIENYLDICARBONYLFERRATE(0) WITH SULFUR DIOXIDE. SYNTHESIS OF IRON—SULFUR DIOXIDE COMPLEXES

PETER REICH-ROHRWIG, ALAN C. CLARK, RAYMOND L. DOWNS and ANDREW WOJCICKI *

The McPherson Chemical Laboratory, The Ohio State University, Columbus, Ohio 43210 (U.S.A.)

(Received August 22nd, 1977)

Summary

Sulfur dioxide reacts at -78° C with Na⁺ [η^{5} -C₅H₅Fe(CO)₂]⁻, prepared by the reduction of [η^{5} -C₅H₅Fe(CO)₂]₂ with sodium amalgam in tetrahydrofuran, to give a red solution containing a species which can be alkylated with RX to η^{5} -C₅H₅Fe(CO)₂S(O)₂R. The alkylation reaction with CH₃I affords both η^{5} -C₅H₃Fe(CO)₂S(O)₂CH₃ and η^{5} -C₅H₅Fe(CO)₂I. The nature of this solution and the possible existence of the anion [η^{5} -C₅H₅Fe(CO)₂SO₂]⁻ therein are discussed. Upon warming to room temperature and chromatography, the solutions of Na⁺ [η^{5} -C₅H₅Fe(CO)₂]⁻ and SO₂ afford the isolable iron—sulfur dioxide complexes, [η^{5} -C₅H₅Fe(CO)₂]₂SO₂, [η^{5} -C₅H₅Fe(CO)]₂(CO)SO₂, and [η^{5} -C₅H₅Fe-(CO)₂SO₂]₂. The characterization and properties of the first two compounds are described.

Introduction

Sulfur dioxide behaves as a Lewis acid toward a number of low-valent transition metals in complexes. Examples of such interactions are found in Ir[P- $(C_6H_5)_3]_2Cl(CO)SO_2$ [1,2], Rh[P(C_6H_5)_3]_2Cl(CO)SO_2 [1,3], Pt[P(C_6H_5)_3]_2- $(SO_2)_2 \cdot C_7H_8$ [4], and Pt[P(C_6H_5)_3]_3SO_2 \cdot 0.7 SO₂ [5]. These complexes contain nonplanar MSO₂ moieties with a pyramidal configuration about the sulfur, indicative of the presence of a lone pair of valence electrons thereon.

Transition metal carbonyl anions undergo reactions with a number of electrophilic reagents, including protic acids, alkyl halides, and various other organic as well as organometallic compounds, especially those containing halogens [6]. The anion $[\eta^{5}-C_{5}H_{5}Fe(CO)_{2}]^{-}$, in particular, has been found to behave as a powerful nucleophile [7]. The observed high degree of nucleophilicity of $[\eta^5-C_5H_5Fe(CO)_2]$ suggested that it would interest readily with SO₂ to form a 1/1 adduct. This adduct is expected to exhibit "nonplanar" Fe—SO₂ bonding, similar in nature to that found for the aforementioned noble metal complexes. The interaction of $[\eta^5-C_5H_5Fe(CO)_2]^-$ with CS₂, a weaker electrophile than SO₂, to yield $[\eta^5-C_5H_5Fe(CO)_2CS_2]^-$ was reported very recently [8].

In this paper are described our studies on reaction between Na⁺ $[\eta^{5}-C_{5}H_{5}Fe-(CO)_{2}]^{-}$ and SO₂. As the investigation progressed it became apparent that the reaction in question is quite complex and affords several Fe—SO₂ products, the nature of which depends on the experimental conditions. Some aspects of this study were communicated earlier [9,10]. Presented herein is a full account.

Results and discussion

Reaction of Na⁺ $[\eta^5 - C_5 H_5 Fe(CO)_2]^-$ with SO₂

Gaseous SO₂ was passed slowly into a tetrahydrofuran solution of an approximately equimolar amount of Na⁺ [η^{5} -C₅H₅Fe(CO)₂]⁻, prepared by the reduction of [η^{5} -C₅H₅Fe(CO)₂]₂ with sodium amalgam and cooled to ca. -78°C. The resulting solution was treated with bis(triphenylphosphine)iminium chloride (PPN⁺ Cl⁻) [11] at -78°C and above in attempts to obtain [PPN]⁺[η^{5} -C₅H₅Fe-(CO)₂SO₂]⁻. However, none of the additions of PPN⁺ Cl⁻ resulted in the isolation of a solid with infrared spectroscopic properties expected for [PPN]⁺[η^{5} -C₅H₅Fe-(CO)₂SO₂]⁻. There was no evidence of such metathesis, and the isolated materials were those likely originating from oxidation and/or decomposition of the iron carbonyl anions (vide infra) *.

In subsequent experiments, reaction mixtures of SO₂ and Na⁺ [η^{5} -C₅H₅Fe-(CO)₂]⁻ in tetrahydrofuran at ca. -78° C were allowed to warm to approximately room temperature, whereupon they acquired a dark reddish-brown color. Depending on the ratio of SO₂ to Na⁺ [η^{5} -C₅H₅Fe(CO)₂]⁻ employed, different products were isolated when solvent was removed and the residue was chromatographed as described in the Experimental section.

When the ratio of SO₂ to Na⁺ [η^5 -C₅H₅Fe(CO)₂]⁻ was 1.5/1, work-up of the reaction mixture afforded [η^5 -C₅H₅Fe(CO)₂]₂ and two red solids, characterized (vide infra) as [η^5 -C₅H₅Fe(CO)₂]₂SO₂, a major product, and [η^5 -C₅H₅Fe(CO)]₂-(CO)SO₂, a minor product. With a much higher, 30/1 ratio of SO₂ to Na⁺ [η^5 -C₅H₅Fe(CO)₂]⁻, the isolated products were [η^5 -C₅H₅Fe(CO)₂]₂, [η^5 -C₅H₅Fe₋(CO)₂]₂SO₂, and the dithionite complex [η^5 -C₅H₅Fe(CO)₂]₂. The properties of the sulfur dioxide complexes [η^5 -C₅H₅Fe(CO)₂]₂SO₂ and [η^5 -C₅H₅Fe(CO)]₂-(CO)SO₂, both characterized by X-ray crystallography [9,12,13], are described in this paper, whereas the characterization and properties of [η^5 -C₅H₅Fe(CO)₂-SO₂]₂ [10] will be treated together with those of other, recently synthesized dithionite complexes in a separate publication [14].

The dinuclear $[\eta^5-C_5H_5Fe(CO)_2]_2SO_2$ (I) is reasonably stable in the solid; however, its solutions in benzene, CHCl₃ or acetone decompose quite rapidly when exposed to air. An attempted sublimation at 110°C (0.15 Torr) for 17 h afforded

^{*} The anion [η⁵-C₅H₅Fe(CO)₂SO₂]⁻ was recently isolated as the potassium salt from reaction of SO₂ with [η⁵-C₅H₅Fe(CO)₂]⁻, prepared by the reduction of [η⁵-C₅H₅Fe(CO)₂]₂ with Na/K alloy in tetrahydrofuran (C.R. Jablonski, private communication).

only $[\eta^{5}-C_{5}H_{5}Fe(CO)_{2}]_{2}$ in 66% yield. Likewise, heating $[\eta^{5}-C_{5}H_{5}Fe(CO)_{2}]_{2}SO_{2}$ in tetrahydrofuran at reflux for 2 h resulted in the formation of $[\eta^{5}-C_{5}H_{5}Fe-(CO)_{2}]_{2}$ (60% yield). This mode of decomposition and the apparent lack of volatility of $[\eta^{5}-C_{5}H_{5}Fe(CO)_{2}]_{2}SO_{2}$ both accord with its observed mass spectrum, which is essentially that of $[\eta^{5}-C_{5}H_{5}Fe(CO)_{2}]_{2}$ [15].

The complex was characterized by elemental analysis and an osmometric molecular weight determination (Table 1), and its structure (I) was determined by X-ray crystallography [9,12]. A salient feature of the structure is the presence of sulfur dioxide as an unsupported bridging ligand attached to the iron atoms at short Fe—S bond distances of 2.28 Å. Such short bond lengths suggest considerable Fe—to—S π -bonding in these linkages. The infrared $\nu(SO_2)$ absorptions, listed in Table 1, appear to support the above structural feature. The values of 1135 and 993 cm⁻¹ are appreciably lower than those reported for the $\nu(SO_2)$ absorptions of metal carbonyl and related complexes containing either terminally bound SO₂ or bridging SO₂ in conjunction with a metal—metal bond. However, they are comparable to the $\nu(SO_2)$ values of other metal carbonyl complexes that incorporate SO₂ as an unsupported bridging group. These frequencies are given in Table 2. Other factors being equal, a sulfur dioxide ligand bonded to two metals would be expected to receive more π -electron density than an SO₂ linked to only one metal, thus accounting for its lower $\nu(SO_2)$.

The second red complex, $[\eta^5-C_5H_5Fe(CO)]_2(CO)SO_2$ (II), a decomposition product of $[\eta^5-C_5H_5Fe(CO)_2]_2SO_2$ in solution, was isolated in low and erratic yields from the reaction mixtures of SO₂ and Na⁺ $[\eta^5-C_5H_5Fe(CO)_2]^-$. The compound crystallizes as large octahedra which, however, undergo rather rapid decomposition on the surface upon exposure to air. This relatively low stability may account for the poor analytical data shown in Table 1. The mass spectrum of $[\eta^5-C_5H_5Fe(CO)]_2(CO)SO_2$, like that of $[\eta^5-C_5H_5Fe(CO)_2]_2SO_2$, is almost identical with the spectrum of $[\eta^5-C_5H_5Fe(CO)_2]_2$ [15], indicating decomposition during the measurement.

The structure II of this complex was elucidated unambiguously by X-ray crystallography [13]. The molecules contain bridging CO and SO₂ ligands and possess an overall *cis* geometry. The presence of a bridging CO is indicated by infrared absorptions at 1817(sh) and 1807 cm⁻¹ (Table 1). The $\nu(SO_2)$ absorptions at 1185, 1175, 1045 and 1037 cm⁻¹ occur at higher frequencies than those for $[\eta^5-C_5H_5Fe(CO)_2]_2SO_2$, which, as stated earlier, empirically accords with the presence of a metal—metal bond in the tricarbonyl complex.

The complex $[\eta^5-C_5H_5Fe(CO)]_2(CO)SO_2$ joins a growing family of η^5 -cyclopentadienyliron carbonyls that adopt one or both of the isomeric structures IIIa (*cis*) and IIIb (*trans*). This group includes members with L = L' = CO [16,17], L = L' = CS [18], L = CO and $L' = Ge(CH_3)_2$ [19], L = L' = CNR [20,21], and

TABLE 1

PHYSICAL AND ANALYTICAL DATA FOR IRON-SULFUR DIOXIDE COMPLEXES

۱

60

Complex	IR (cm ⁻¹) ^a		¹ H NMR	Analysis (Foul	nd (calcd.)) (%)		Mol. wt.
	P(CO)	ν(SO2)		U	Н	S	(r ound (calcu,)
[η^{5} -C ₅ H ₅ F ₆ (CO) ₂] ₂ 8O ₂	20278, 2016v8,	1136, 993	5,06s	40,46	2.61	7.75	416
	1965s, 1953vs ^c			(40.23)	(2.41)	(1,67)	(418)
[\eta ⁵ -C ₅ H ₅ Fe(CO)] ₂ (CO)SO ₂	2040vs, 1995m-s,	1185, 1175,	5.06s	35.0-36.5	2.16-2.27	6.71-7.90	518, 538
	1817(sh), 1807m-s ^d	1045, 1037	(6,18s)	(40.04)	(2.58)	(8.22)	(390)

^d Nujol mull except as noted. Abbreviations: vs, very strong; s, strong; m, medium; (sh) shoulder. ^b CDCl3 or (acetone-d6) solution and tetramethylsilane as an internal standard. Abbreviation: s, singlet. ^c Simple group theoretical conadderations predict 2, 3 or 4 1R-active ν(CO) absorptions for complexes of the type η^{5-C}5H₅(CO)₂Fe-E(X)₂-Fe(CO)₂(η^{5-C}5H₅), depending on the conformation. ^d CHCl3 solution.

TABLE 2

INFRARED V(SO2) ABSORPTIONS OF SOME METAL-SULFUR DIOXIDE COMPLEXES

Complex	Type ^a	$\nu(SO_2) (cm^{-1})^{b}$	Reference
η^{5} -C ₅ H ₅ (CO) ₂ Fe-S(O) ₂ -Fe(CO) ₂ (η^{5} -C ₅ H ₅)	A [9,12]	1135, 993	This work
K6[(CN)5Co-S(O)2-Co(CN)5]	Α	1078, 1072, 984	[33]
[(CH ₃) ₄ N] ₂ [(CO) ₅ Cr-S(O) ₂ -Cr(CQ) ₅]	А	1138, 980	[34]
[(CH ₃) ₄ N] ₂ [(CO) ₅ W-S(O) ₂ -W(CO) ₅]	Α	1138, 978	[34]
$\eta^{5}-C_{5}H_{5}(CO)Fe(\mu-CO)(\mu-SO_{2})Fe(CO)(\eta^{5}-C_{5}H_{5})$	B [13]	1185, 1175,	This work
		1045, 1037	
(CO)4Fe(μ-SO ₂)Fe(CO)4	B [30]	1210, 1196, 1049 ^c	[28]
η^5 -C ₅ H ₅ Mn(CO) ₂ SO ₂	C [31]	1282 ^d	[35]
η^6 -C ₆ H ₆ Cr(CO) ₂ SO ₂	С	1253 ^d	[36]
η ⁵ -C ₅ H ₅ Rh(C ₂ H ₄)SO ₂	C [32]	1258, 1105-1093	[37]
$Rh[P(C_6H_5)_3]_2Cl(CO)SO_2$	C' [3]	1214, 1188, 1057 ^c	[1]
Ir[P(C6H5)3]2Cl(CO)SO2	C' [2]	1198, 1185, 1048 °	[1]

^a A = unsupported SO₂ bridge; B = SO₂ bridge and M—M bond; C = terminal SO₂, planar MSO₂; C' = terminal SO₂, nonplanar MSO₂. Structures determined by X-ray techniques are referenced. ^b In Nujol mull except as noted. ^c KBr pellet. ^d Benzene solution.

L = CO and L' = CNR [21], inter alia. The infrared spectra of the L = L' = CO complexes, in particular, have been thoroughly investigated in several solvents,

and an assignment of the $\nu(CO)$ bands was made to the two isomeric species [22]. By analogy with this assignment, the $\nu(CO)$ absorptions at 2040, 1995, and 1807 cm⁻¹ in CHCl₃ solution (Table 1) may be attributed to the *cis* isomer of $[\eta^5-C_5H_5Fe(CO)]_2(CO)SO_2$, which appears to be the sole species in the isolated solid. The origin of the shoulder at 1817 cm⁻¹ is uncertain. It may well be that some *trans*- $[\eta^5-C_5H_5Fe(CO)]_2(CO)SO_2$ exists in solution, for its infrared terminal $\nu(CO)$ absorption would probably overlap with the band at 1995 cm⁻¹ [22].

(Ⅲa)

(шь)

62

However, if this isomer does exist, it must be present in low concentrations as inferred from the relative intensities of the $\nu(CO)$ bands at 2040 and 1995 cm⁻¹. It is worthy of note that only one η^5 -C₅H₅ signal occurs in the ¹H NMR spectra of the complex in CDCl₃ or acetone-d₆. Detailed studies on *cis*—trans isomerism in $[\eta^5$ -C₅H₅Fe(CO)]₂(CO)SO₂ were not undertaken because of a rather low stability of the complex in solution.

Attempts at trapping $[\eta^5 - C_5 H_5 Fe(CO)_2 SO_2]^-$

Unsuccessful attempts at isolation of $[\eta^5 - C_5H_5Fe(CO)_2SO_2]$ from tetrahydrofuran solution by the addition of PPN⁺ Cl⁻ (vide supra) led to experiments aimed at trapping the above anion with various alkylating reagents, particularly with $CH_{3}I$. These reactions were conducted by adding the alkyl halide (or another alkylating reagent) to a tetrahydrofuran solution of Na⁺ $[\eta^{5}-C_{5}H_{5}Fe(CO)_{2}]^{-}$ and SO_2 prepared at low temperatures (generally -78° C). The reaction conditions and the results of these experiments are summarized in Table 3. Focussing on the data from the reactions that utilized CH₃I, it is of interest that both η^{5} -C₅H₅Fe(CO)₂I and η^{5} -C₅H₅Fe(CO)₂S(O)₂CH₃ were isolated as products. In those experiments where the quantities of the two iron dicarbonyl products were determined, the yield of the S-sulfinato complex (46%) substantially exceeded that of the iodo complex ($\leq 15\%$). The formation of η^{5} -C₅H₅Fe(CO)₂I may appear surprising and suggestive that the iron carbonyl-sulfur dioxide precursor of the isolated products is not $[\eta^5-C_5H_5Fe(CO)_2SO_2]^-$. This is because metal carbonyl anions generally react with alkyl halides to afford the alkylmetal carbonyls, but not the corresponding metal carbonyl halides [6]. Since the presumed $[\eta^5 - C_5 H_5 Fe(CO)_2 SO_2]^-$ appears to undergo conversion to the isolable $[\eta^5 - C_5 H_5 Fe(CO)_2]_2 SO_2$ under the experimental conditions that parallel those of the alkylation, reactions of this dinuclear complex with CH₂I were examined to shed more light on the origin of the products.

The reaction (eq. 1), conducted neat and in tetrahydrofuran solution, pro-

$$[\eta^{5}-C_{5}H_{5}Fe(CO)_{2}]_{2}SO_{2} + CH_{3}I \rightarrow \eta^{5}-C_{5}H_{5}Fe(CO)_{2}S(O)_{2}CH_{3} + \eta^{5}-C_{5}H_{5}Fe(CO)_{2}I$$
(1)

ceeded at a reasonable rate upon heating to afford good yields of η^{5} -C₅H₅Fe(CO)₂I (54-56%) and much lower yields of η^{5} -C₅H₅Fe(CO)₂S(O)₂CH₃ (21-26%). Thus it appears that $[\eta^{5}$ -C₅H₅Fe(CO)₂]₂SO₂ is not the primary source of the S-sulfinato product formed by the alkylation of the solutions of Na⁺ $[\eta^{5}$ -C₅H₅Fe(CO)₂]⁻ and SO₂ at low temperatures. Whether the anion $[\eta^{5}$ -C₅H₅Fe(CO)₂SO₂]⁻ is the principal precursor of the S-sulfinate cannot be stated with certainty. However, this may well be so for the following reasons.

Reactions of CH₃I with tetrahydrofuran solutions of Na⁺ $[\eta^5-C_5H_5Fe(CO)_2]^$ and equimolar SO₂ yield very little, if any, $[\eta^5-C_5H_5Fe(CO)_2]_2SO_2$ when the solutions are allowed to warm to approximately room temperature. This indicates that CH₃I quite effectively traps either $[\eta^5-C_5H_5Fe(CO)_2]_2SO_2$ or a precursor thereof. The low temperatures employed in these reactions, along with considerations of reactivity of CH₃I toward various iron carbonyl—sulfur dioxide complexes, both suggest that the trapped species is either $[\eta^5-C_5H_5Fe(CO)_2^-$ SO₂ $]^-$ or one with similar expected chemical properties. The reaction of Na⁺

TABLE 3

Reactions of Na⁺ [$\eta^5.c_5H_5Fe(CO)_2$]^{- a} with so₂-rx in tetrahydrofuran

.

Experi- ment	Addition of SO2	Addition of RX ^b	Products c , d , e
I	21.4 mmol over 80 min at —78°C, stir 100 min at —78°C, warm ⁷ for 25 min	48 mmol of CH3I, stir 21 h	46% n ⁵ -C ₅ H ₅ Fe(CO) ₂ S(O) ₂ CH ₃ , 4% n ⁵ -C ₅ H ₅ Fe(CO) ₃ I)
III	28,4 mmol over 4 h at78°C,warm ^f for 1 h 41.6 mmol over 3 h at78°C, warm ^f for 6 h	30 mmol of CH31, stir 12 h 32,1 mmol of CH31, stir 16 h	18.4% n ^{5.} C5H5Fe(CO) ₂ S(O) ₂ CH3 ^g 26.1% n ^{5.} C5H5Fe(CO) ₂ S(O) ₂ CH3 ^g , 26.1% n ^{5.} C5H5Fe(CO) ₂ S(O) ₂ CH3 ^g ,
١٧	20 mmol over 4 h at78°C, stir 1 h at 78°C	40,1 mmol of CH ₃ I at78°C, stir 10.6 h. warm for 3.5 h	Li ¹ 5.H5 ⁻ Fe(CO)22202 22.4% η ^{5.} C5H5Fe(CO)2S(O)2CH3 ⁸
^	20 mmol at70°C	20 mmol of CH ₃ I at -70°C,	46%
N	21.4 mmol over 80 min at -78° C, stir 100 min at -78° C, warm f for 25 min	48 mmol of p-CH ₃ C ₆ H ₄ SO ₃ CH ₃ , stir 21 h	2% η ⁵ -C ₅ H ₅ Fe(CO) ₂ S(O) ₂ CH ₃ , 2% η ⁵ -C ₅ H ₅ Fe(CO) ₂ S(O) ₂ CH ₃ , [η ⁵ -C ₅ H ₅ Fe(CO) ₂] ₂ SO ₂ ,
ΝII	41.6 mmol over 5.5 h at -78° C, warm f	21.1 mmol of (CH ₃ 0) ₂ SO ₂ .	$[7^{-1}$ -C5H5 ^{tr} e(CU)]2(CO)5O2 No IR evidence of 7^{5} -C5H5(ECO)2S(O)2CH3; $[7^{-5}$ C - 1^{-1} = 7^{-1} C - 1^{-1} = 7^{-1} CONEO2
NII	20 mmol at70 to60°C	2011 22 11 100 mmol of CH ₃ Br at70 to60°C, stir 22 h at 70 to60°C, stir at h at	14
XI	20 mmol at70° C	-20 to -13°C 20 mmol of C6H5CH2Cl at -70°C, stir 60 h at -70 to -43°C	16% 75-C5H5Fe(CO)2S(O)2CH2O6H5; no lR evidence of 75-C5H5Fe(CO)2CI
01			

^a from 10 mmol of [7⁵-C₅H₅Fe(CO)₂]2.^D Following "addition of SO2", ^c [7⁵-C₅H₅Fe(CO)₂]2 was obtained in all experiments.^A The formation of 7⁵-C₅H₅Fe(CO)₂I was not examined in experiments II, III, and IV.^C Other, minor products were also detected upon chromatography but were not fully characterized.^A After the cooling bath had been removed, the reaction flask was maintained at room temperature. ^R Possible losses sustained through coprecipitation with Nal.

t

 $[\eta^5-C_5H_5Fe(CO)_2]$ with CH₃I to give $\eta^5-C_5H_5Fe(CO)_2CH_3$, followed by SO₂ insertion (eq. 2), a reasonable alternative to the above proposal, may be readily

$$Na^{+} [\eta^{5} - C_{5}H_{5}Fe(CO)_{2}]^{-} + CH_{3}I \rightarrow \eta^{5} - C_{5}H_{5}Fe(CO)_{2}CH_{3} + NaI$$
$$\eta^{5} - C_{5}H_{5}Fe(CO)_{2}CH_{3} + SO_{2} \rightarrow \eta^{5} - C_{5}H_{5}Fe(CO)_{2}S(O)_{2}CH_{3}$$
(2)

(2)

dismissed from the reported kinetic data [23] and from the following additional experiments. First, there is no observable reaction between η^5 -C₅H₅Fe(CO)₂- $CH_2C_6H_5$ and SO_2 under the conditions that mirror those of Experiment IX in Table 3. Second, as reported previously [24], reaction of Na⁺ $[\eta^{5}-C_{5}H_{5}Fe(CO)_{7}]^{-}$ with SO, followed by BrCH₂C=CCH₃ yields η^5 -C₅H₅Fe(CO)₂S(O)₂CH₂C=CCH₃, whereas η^5 -C₅H₅Fe(CO)₂CH₂C=CCH₃ and SO₂ afford η^5 -C₅H₅Fe(CO)₂C=C(CH₃)- $\overline{S(O)OCH_2}$. Third, the interaction of $ClCH_2CH=C(CH_3)_2$ with a mixture of Na⁺ $[\eta^5-C_5H_5Fe(CO)_2]^-$ and SO₂ affords $\eta^5-C_5H_5Fe(CO)_2S(O)_2CH_2CH=C(CH_3)_2$ exclusively, but η^{5} -C₅H₅Fe(CO)₂CH₂CH=C(CH₃)₂ and SO₂ yield the two isomers η^{5} -C₅H₅Fe(CO)₂S(O)₂CH₂CH=C(CH₃)₂ and η^{5} -C₅H₅Fe(CO)₂S(O)₂C(CH₃)₂CH= CH₂ [25].

The formation of both η^{5} -C₅H₅Fe(CO)₂S(O)₂CH₃ and η^{5} -C₅H₅Fe(CO)₂I in the reactions under discussion may indicate that these products are derived in part from $[\eta^{5}-C_{5}H_{5}Fe(CO)_{2}]_{2}SO_{2}$ and $CH_{3}I$. Alternatively however, the interaction between $[\eta^5-C_5H_5Fe(CO)_2SO_2]^-$ (or a species with similar expected reactivity) and CH₃I may be a free radical one, affording both the iodo and S-sulfinato complexes. An earlier study [26] of the reaction of a tetrahydrofuran solution of Na⁺ $[\eta^{5}-C_{5}H_{5}Fe(CO)_{2}]^{-}$ and SO₂ with optically active BrCH(CH₃)C₆H₅ * revealed complete loss of stereochemistry upon the formation of η^{5} -C₅H₅Fe- $(CO)_2S(O)_2CH(CH_3)C_6H_5$. This would seem to indicate a free radical pathway, a mechanism consistent with the nature of the products obtained in the alkylation reactions described herein.

Notwithstanding uncertainties in the identity of the reactive iron carbonylsulfur dioxide species, the solutions of Na⁺ $[\eta^5-C_5H_5Fe(CO)_2]$ and SO₂ serve as a useful reagent for the preparation of iron S-sulfinates that are inaccessible via the SO_2 insertion reaction [24,25]. Very likely they possess a wider synthetic utility, which, however, still remains to be explored.

Summary of reactions

In conclusion, we wish to present a summary of reasonable pathways leading to the formation of various iron-sulfur dioxide products investigated in this work. These pathways are depicted in Scheme 1.

Because of the complexity of the reaction system Na⁺ $[\eta^5 - C_5 H_5 Fe(CO)_2]^$ and SO_2 , parts of the scheme are admittedly speculative. Moreover, no attempt was made to present all possible reactions; only those thought to be essential in the formation of various observed products are included. The identity of the oxidizing agent [O] is unknown; it may be SO₂, as air was excluded from these solutions. The species η^5 -C₅H₅Fe(CO)₂SO₂ may undergo loss of SO₂ by analogy

^{*} The experimental conditions for this reaction were similar to those employed for the reaction of Na⁺ $[\eta^5$ -C₅H₅Fe(CO)₂ Γ + SO₂ with ClCH₂CH=C(CH₃)₂ [25].

SCHEME 1

with the reported [27] lability of metal carbonyl radicals. Coupling between the radicals η^{5} -C₅H₅Fe(CO)₂ and η^{5} -C₅H₅Fe(CO)₂SO₂ would then account for the formation of $[\eta^{5}$ -C₅H₅Fe(CO)₂]₂, $[\eta^{5}$ -C₅H₅Fe(CO)₂]₂SO₂, and $[\eta^{5}$ -C₅H₅Fe(CO)₂-SO₂]₂. The complex $[\eta^{5}$ -C₅H₅Fe(CO)₂]₂SO₂ does not arise directly from $[\eta^{5}$ -C₅H₅Fe(CO)₂]₂ and SO₂, since we have shown that such an insertion reaction does not proceed at temperatures up to 25°C. However, it is worthy of note that reaction between $[\eta^{5}$ -C₅H₅Fe(CO)₂]₂ and SO₂ at 40°C led to the isolation of a polynuclear $(\eta^{5}$ -C₅H₅)₄Fe₄(CO)₄(SO₂)₃ upon work-up [28] *.

Experimental

Reactions were conducted in an atmosphere of nitrogen, which was also used routinely in the handling of organometallic compounds. Florisil (60–100 mesh) and Ventron or Woelm alumina, deactivated with H_2O (generally 6%), were employed in chromatographic separations and purifications. Anhydrous grade SO₂ was purified as described previously [24]. Tetrahydrofuran (THF) was freshly distilled from CaH₂ or LiAlH₄ under nitrogen. All other chemicals and solvents procured commercially were reagent grade or equivalent quality and were used without further purification.

Melting points were obtained on a Thomas—Hoover capillary melting point apparatus and are uncorrected. Proton NMR spectra were taken on a Varian Associates A-60 or A-60A spectrometer. Infrared (IR) spectra were recorded on a Perkin—Elmer 337 or Beckman IR-9 spectrophotometer using polystyrene film for calibration. Mass spectra were recorded by Mr. C.R. Weisenberger on an A.E.I. Model MS-9 spectrometer at 70 eV. Molecular weights were measured on a Mechrolab Model 301-A vapor pressure osmometer in CHCl₃ solution. Elemental analyses and some molecular weights were obtained by Galbraith Laboratories, Inc., Knoxville, Tenn., and Pascher Mikroanalytisches Laboratorium, Bonn, Germany.

^{*} The possibility that $[\eta^{5}-C_{5}H_{5}Fe(CO)_{2}]_{2}SO_{2}$ was formed in this reaction but decomposed to the "recovered" $[\eta^{5}-C_{5}H_{5}Fe(CO)_{2}]_{2}$ cannot be nuled out because of the rather high temperatures employed in the work-up.

Reaction of Na⁺ $[\eta^5-C_5H_5Fe(CO)_2]^-$ with SO₂

A THF solution (120 ml) of Na⁺ $[\eta^5 - C_5 H_5 Fe(CO)_2]$, prepared from 1.77 g (5.0 mmol) of $[\eta^5-C_5H_5Fe(CO)_2]_2$ and freed from excess sodium amalgam and mercury, was cooled to ca. -78° C and treated with 0.96 g (15 mmol) of SO₂ dissolved in 20 ml of THF over a period of 10 min. The cooling bath was removed and the reaction mixture was allowed to warm to room temperature in 45-60min. The solvent was evaporated in vacuo at room temperature, the residue was dissolved in CHCl₃, and the resulting solution was filtered through Florisil. The Florisil was washed with acetone and the combined wash and filtrate were evaporated to dryness. The residue was dissolved in minimum CHCl₃ and chromatographed on a 2.7×25 cm column of Florisil. Chloroform eluted off a purple band containing $[\eta^5$ -C₅H₅Fe(CO)₂]₂, 10/1 CHCl₃/acetone removed a narrow red band of $[\eta^5-C_5H_5Fe(CO)_2(CO)SO_2]$, and then acetone removed another red band of $[\eta^5-C_5H_5Fe(CO)]_2(CO)SO_2$, and then acetone removed another red dryness, the residue was dissolved in minimum CHCl₃, filtered, and the product was precipitated by the addition of pentane at 0°C. The yields of $[\eta^5-C_5H_5Fe(CO)]_2$ -(CO)SO₂ and $[\eta^5-C_5H_5Fe(CO)_2]_2SO_2$, dec. 142°C, were 0.04 (2%) and 0.4–0.6 g (20–30%), respectively. Physical and analytical data for these complexes are furnished in Table 1.

Reaction between Na⁺ [η^{5} -C₅H₅Fe(CO)₂]⁻ and SO₂ in THF was also carried out exactly as described above, but with a much larger, 7.0 g (110 mmol) amount of SO₂. Chromatography on Florisil afforded a purple band containing [η^{5} -C₅H₅Fe(CO)₂]₂ (0.36 g), which was eluted off with CHCl₃, an orange band ([η^{5} -C₅H₅Fe(CO)₂SO₂]₂) removed with 5/1 CHCl₃/acetone, and a red band ([η^{5} -C₅H₅Fe(CO)₂]₂SO₂) removed with acetone. The yields of [η^{5} -C₅H₅Fe(CO)₂⁻ SO₂]₂ and [η^{5} -C₅H₅Fe(CO)₂]₂SO₂ were 0.40 (17%) and 0.14 g (7%), respectively.

Reaction of Na⁺ $[\eta^5 \cdot C_5 H_5 Fe(CO)_2]^-$ with SO₂ followed by CH₃I

A representative alkylation reaction of a mixture of Na⁺ $[\eta^5 - C_5 H_5 Fe(CO)_2]^$ and SO₂ is described below.

A THF solution (150 ml) of Na⁺ [η^5 -C₅H₅Fe(CO)₂]⁻, prepared from 3.54 g (10.0 mmol) of [η^5 -C₅H₅Fe(CO)₂]₂, was cooled to -78° C. Sulfur dioxide (0.94 ml of liquid, 21 mmol) was then passed into this solution in a stream of nitrogen over a period of 80 min. The resulting red reaction mixture was stirred at -78° C for 100 min, allowed to warm for 25 min, treated with CH₃I (6.8.g, 48 mmol) and stirred at room temperature under a Dry Ice-cooled condenser for 21 h. Filtration, solvent removal from the filtrate, and chromatography of the residue on alumina (6% H₂O) eluting with CHCl₃/acetone led to the isolation of a mixture of [η^5 -C₅H₅Fe(CO)₂]₂ and η^5 -C₅H₅Fe(CO)₂I (0.80 g, 15 and 4%, respectively, by IR spectroscopy) and of η^5 -C₅H₅Fe(CO)₂S(O)₂CH₃ (2.36 g, 46%). The insoluble solid from the reaction mixture was shown to be NaI (1.25 g).

Several other alkylation reactions were carried out under analogous and somewhat modified experimental conditions. These conditions and the results are summarized in Table 3. The S-sulfinates η^{5} -C₅H₅Fe(CO)₂S(O)₂R, all known compounds [29], were characterized by IR spectroscopy.

66 ·

Reaction of $[\eta^5 - C_5 H_5 Fe(CO)_2]_2 SO_2$ with $CH_3 I$

A solution of 0.300 g (0.718 mmol) of $[\eta^5-C_5H_5Fe(CO)_2]_2SO_2$ in 20 ml of CH₃I in a sealed glass tube was maintained at 80–85°C for 3 h. The tube was cooled to room temperature and opened, the solvent was removed, and the residue was chromatographed on alumina to afford 0.245 g (56% yield) of η^5 -C₅H₅Fe(CO)₂I and 0.096 g (26% yield) of η^5 -C₅H₅Fe(CO)₂S(O)₂CH₃.

When the same reaction between 0.230 g (0.550 mmol) of $[\eta^5-C_5H_5Fe(CO)_2]_2$ -SO₂ and 3.0 ml (48 mmol) of CH₃I was carried out in THF (20 ml) at reflux, 0.179 g (54% yield) of $\eta^5-C_5H_5Fe(CO)_2I$ and 0.059 g (21% yield) of $\eta^5-C_5H_5Fe(CO)_2S(O)_2CH_3$ were isolated upon chromatography. There was no evidence of $[\eta^5-C_5H_5Fe(CO)_2]_2$.

Acknowledgements

We gratefully acknowledge support of this work by the National Science Foundation (Grant No. CHE76-02413 AO1) and the North Atlantic Treaty Organization (Grant No. 604 with Professor M. Graziani). P.R.-R. thanks The Ohio State University Graduate School for a Postdoctoral Fellowship.

References

- 1 L. Vaska and S.S. Bath, J. Amer. Chem. Soc., 88 (1966) 1333.
- 2 S.J. La Placa and J.A. Ibers, Inorg. Chem., 5 (1966) 405.
- 3 K.W. Muir and J.A. Ibers, Inorg. Chem., 8 (1969) 1921.
- 4 D.C. Moody and R.R. Ryan, Inorg. Chem., 15 (1976) 1823.
- 5 P.G. Eller, R.R. Ryan and D.C. Moody, Inorg. Chem., 15 (1976) 2442.
- 6 See, for example, R.B. King, Advan. Organometal. Chem., 2 (1964) 157.
- 7 R.E. Dessy, R.L. Pohl and R.B. King, J. Amer. Chem. Soc., 88 (1966) 5121.
- 8 J.E. Ellis, R.W. Fennell and E.A. Flom, Inorg. Chem., 15 (1976) 2031.
- 9 M.R. Churchill, B.G. DeBoer, K.L. Kalra, P. Reich-Rohrwig and A. Wojcicki, J. Chem. Soc., Chem. Commun., (1972) 981.
- 10 N.H. Tennent, S.R. Su, C.A. Poffenberger and A. Wojcicki, J. Organometal. Chem., 102 (1975) C46.
- 11 J.K. Ruff and W.J. Schlientz, Inorg. Syn., 15 (1974) 84.
- 12 M.R. Churchill, B.G. DeBoer and K.L. Kalra, Inorg. Chem., 12 (1973) 1646.
- 13 M.R. Churchill and K.L. Kalra, Inorg. Chem., 12 (1973) 1650.
- 14 C.A. Poffenberger, N.H. Tennent and A. Wojcicki, to be submitted for publication.
- 15 E. Schumacher and R. Taubenest, Helv. Chim. Acta, 49 (1966) 1447.
- 16 O.S. Mills, Acta Crystallogr., 11 (1968) 620.
- 17 R.F. Bryan, P.T. Greene, D.S. Field and M.J. Newlands, J. Chem. Soc., Chem. Commun., (1969) 1477.
- 18 J.W. Dunker, J.S. Finer, J. Clardy and R.J. Angelici, J. Organometal. Chem., 114 (1976) C49.
- 19 R.D. Adams, M.D. Brice and F.A. Cotton, Inorg. Chem., 13 (1974) 1080.
- 20 F.A. Cotton and B.A.Frentz, Inorg. Chem., 13 (1974) 253.
- 21 J.A.S. Howell, M.J. Mays, I.D. Hunt and O.S. Mills, J. Organometal. Chem., 128 (1977) C29.
- 22 A.R. Manning, J. Chem. Soc. A. (1968) 1319.
- 23 S.E. Jacobson and A. Wojcicki, Inorg. Chim. Acta, 10 (1974) 229.
- 24 J.E. Thomasson, P.W. Robinson, D.A. Ross and A. Wojcicki, Inorg. Chem., 10 (1971) 2130.
- 25 R.L. Downs and A. Wojcicki, Inorg. Chim. Acta, in press.
- 26 J.J. Alexander and A. Wojcicki, Inorg. Chim. Acta, 5 (1971) 655.
- 27 M.S. Wrighton and D.S. Ginley, J. Amer. Chem. Soc;, 97 (1975) 2065.
- 28 D.S. Field and M.J. Newlands, J. Organometal. Chem., 27 (1971) 221.
- 29 J.P. Bibler and A. Wojcicki, J. Amer. Chem. Soc., 88 (1966) 4862.
- 30 J. Meunier-Piret, P. Piret and M. van Meerssche, Bull. Soc. Chim. Belg., 76 (1967) 374.
- 31 C. Berbeau and R.J. Dubey, Can. J. Chem., 51 (1973) 3684.
- 32 R.R. Ryan, P.G. Eller and G.J. Kubas, Inorg. Chem., 15 (1976) 797.
- 33 A.A. Viček and F. Basolo, Inorg. Chem., 5 (1966) 156.

34 J.K. Ruff, Inorg. Chem., 6 (1967) 2080.

68

35 W. Strohmeier and J.F. Guttenberger, Chem. Ber., 97 (1964) 1871.

36 W. Strohmeier, G. Popp and J.F. Guttenberger, Chem. Ber., 99 (1966) 165.

37 R. Cramer, J. Amer. Chem. Soc., 89 (1967) 5377.